
Real-time Risk Prediction at 

Signalized Intersections Using 

a Graph Neural Network

PPPR #!Final Report

December 2023



 

Disclaimer 
The contents of this report reflect the views of the authors, who are responsible for the 
facts and the accuracy of the information presented herein. This document is 
disseminated in the interest of information exchange. The report is funded, partially or 
entirely, by a grant from the U.S. Department of Transportation’s University 
Transportation Centers Program. However, the U.S. Government assumes no liability for 
the contents or use thereof. 

 

 



 

TECHNICAL REPORT DOCUMENTATION PAGE 

1. Report No.  
06-012 

2. Government Accession No. 
 

3. Recipient’s Catalog No. 
 

4. Title and Subtitle 
Real-time Risk Prediction at Signalized Intersections Using a 
Graph Neural Network 

5. Report Date 
December 2023 
6. Performing Organization Code: 
  

7.Author(s) 
Akash Sonth 
Abhijit Sarkar 
Sparsh Jain 
Hirva Bhagat 
Zachary Doerzaph 

8. Performing Organization Report No. 
06-012 

9. Performing Organization Name and Address: 
Safe-D National UTC 
Virginia Tech Transportation Institute 
3500 Transportation Research Plaza 
Blacksburg, VA 24061 

10. Work Unit No. 
11. Contract or Grant No. 
69A3551747115/Project 06-012 

12. Sponsoring Agency Name and Address  
Office of the Secretary of Transportation (OST) 
U.S. Department of Transportation (US DOT) 
 
 

13. Type of Report and Period 
Final Research Report 
05/2022-10/2023 
14. Sponsoring Agency Code 
 

15. Supplementary Notes 
This project was funded by the Safety through Disruption (Safe-D) National University Transportation Center, a 
grant from the U.S. Department of Transportation – Office of the Assistant Secretary for Research and Technology, 
University Transportation Centers Program. 
16. Abstract 
Intersection-related traffic crashes and fatalities are major concerns for road safety. This project aimed to 
understand the major causes of conflicts at intersections by studying the intricate interplay between roadway 
agents. The approach involved using the current traffic camera systems to automatically process traffic video data. 
As manual annotation of video datasets is a very labor-intensive and costly process, this research leveraged 
modern computer vision algorithms to automatically process these videos and retrieve kinematic behavior of the 
traffic actors. Results demonstrated how traffic actors and road segments can be modeled independently via 
graphs and how they can be integrated into a framework that can model traffic systems. The team used a graph 
neural network to model (a) the interaction of all the roadway agents at any given instance and (b) their role in 
road safety, both individually and as a composite system. The model reports a near-real-time risk score for a 
traffic scene. The study concludes with a presentation of a new drone-based trajectory dataset to accelerate 
research in intersection safety. 
17. Key Words 
Intersection safety, crash causation analysis, graph 
neural network, computer vision, traffic camera 

18. Distribution Statement 
No restrictions. This document is available to the 
public through the Safe-D National UTC website, as 
well as the following repositories: VTechWorks, The 
National Transportation Library, The Transportation 
Library, Volpe National Transportation Systems 
Center, Federal Highway Administration Research 
Library, and the National Technical Reports Library. 

19. Security Classif. (of this report) 
Unclassified 

20. Security Classif. (of this 
page) Unclassified 

21. No. of Pages 
55 

22. Price 
$0 

Form DOT F 1700.7 (8-72)                       Reproduction of completed page authorized

http://orcid.org/0000-0002-5045-5906
https://orcid.org/0000-0003-0525-5240
http://orcid.org/0000-0002-4368-6108
http://orcid.org/0000-0001-7725-4373
http://orcid.org/0000-0002-3897-1430
https://www.vtti.vt.edu/utc/safe-d/
https://vtechworks.lib.vt.edu/
https://ntl.bts.gov/
https://ntl.bts.gov/
https://www.library.northwestern.edu/libraries-collections/transportation/
https://www.library.northwestern.edu/libraries-collections/transportation/
https://www.volpe.dot.gov/library
https://www.volpe.dot.gov/library
https://highways.dot.gov/resources/research-library/federal-highway-administration-research-library
https://highways.dot.gov/resources/research-library/federal-highway-administration-research-library
https://ntrl.ntis.gov/NTRL/


ii 
 

Abstract 
Intersection-related traffic crashes and fatalities are major concerns for road safety. This 
project aimed to understand the major causes of conflicts at intersections by studying the 
intricate interplay between roadway agents. The approach involved using the current 
traffic camera systems to automatically process traffic video data. As manual annotation 
of video datasets is a very labor-intensive and costly process, this research leveraged 
modern computer vision algorithms to automatically process these videos and retrieve 
kinematic behavior of the traffic actors. Results demonstrated how traffic actors and road 
segments can be modeled independently via graphs and how they can be integrated into 
a framework that can model traffic systems. The team used a graph neural network to 
model (a) the interaction of all the roadway agents at any given instance and (b) their role 
in road safety, both individually and as a composite system. The model reports a near-
real-time risk score for a traffic scene. The study concludes with a presentation of a new 
drone-based trajectory dataset to accelerate research in intersection safety. 
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Introduction 
Motor vehicle crashes continue to claim a significant number of lives in the United States. From 
2015 to 2021, there were over 35,000 deaths every year due to motor vehicle crashes [1]. For 
example, in 2019, there were approximately 6.76 million police-reported crashes in the U.S., 
resulting in 36,355 fatalities [2, 3]. In 2020 and 2021, there were approximately 38,824 and 42,915 
fatalities, respectively [4, 5]. The financial impact of these incidents is substantial, with an 
estimated cost of $242 billion attributed to crashes, prompting the U.S. Department of 
Transportation to address road safety as a critical national public health concern. 

According to studies, more than 25% of all traffic fatalities and more than 50% of traffic injuries 
occur at or near intersections. According to NHTSA, roughly 22% of intersection-related crashes 
occur when the vehicle is turning left, 12% while crossing over, and 22% while traveling off the 
road [6, 7]. These crashes result in significant damage in the form of human injury, property 
damage, and economic costs [4, 5]. Intersection-related crashes are common because multiple 
approaching vehicles from two or more intersecting roads create the potential for conflicts. 
Maneuvers such as turning left, turning right, crossing over, or yielding to other vehicles, 
pedestrians, and cyclists often increase the risk of crash occurrence. Intersections are a special 
roadway segment where different streams of traffic intersect as well as their speed and directions 
change.  

Several factors can affect the likelihood of intersection crashes, including traffic control devices, 
weather and road conditions, critical pre-crash events, and driver-related information. Driver 
behavior in safety critical event also plays key role [8-10].  These factors may also include 
infrastructure-specific characteristics such as number of lanes, width of lanes, lighting conditions, 
traffic signal patterns and timing, and presence of visual obstacles [1, 6, 7]. Driver behavior also 
plays a major role in intersection-related crashes, such as failing to yield to right-of-way traffic, 
overspeeding, running a red light, distraction, speeding to avoid a red light, distracted driving, and 
unsolicited lane changes [11-16].  

Understanding the factors contributing to these intersection crashes is crucial in developing 
effective strategies to prevent them. Analyzing traffic participants’ behavior in various intersection 
scenarios provides valuable insights into the causes of crashes and enables the implementation of 
targeted preventive measures. Identification of crash-related factors typically rely on lagging 
indicators, such as police accident reports. Although these reports are informative, identification 
of driver behavior can be challenging due to reliance on eyewitness testimony and post hoc crash 
reconstruction. In addition, it can take several years to compile enough data to identify hazardous 
locations and the underlying issues. Thus, new approaches are required to evaluate the interplay 
between behavior of vehicles and infrastructure elements that will inform strategies to proactively 
reduce crashes and their associated injuries and fatalities.  
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Stakeholders need a system that can analyze traffic safety in real time. The system should be able 
to automatically identify potential crash-related conflicts, identify the factors associated with the 
conflict, and provide suggestions for countermeasures. The goal is to build a system that can 
provide real-time assessment of traffic safety at each intersection, record safety indicators, and 
track them over time. With the growing volume of traffic, it is important to identify potential 
hazardous locations even before the crash takes place. The continuous assessment of intersections 
is therefore a critical first step. By conducting a comprehensive analysis of traffic participants, we 
can identify patterns and trends that contribute to the occurrence of crashes. Analyzing the 
behavior of drivers, pedestrians, and cyclists in different scenarios will allow us to understand the 
prevalence of these risky behaviors and develop strategies to mitigate them. Thus, we can learn 
intricate patterns from intersections that have recorded an historically high volume of crashes and 
distinguish them from intersections that are not prone to crashes. Learning traffic patterns across 
adjacent intersections and the full roadway network as a system will also help alleviate traffic 
congestion.  

Ultimately, understanding and preventing crashes requires a multidimensional approach that 
considers the complex interactions between various traffic participants and their environment. 
Analyzing the behavior of drivers including distraction, gaze fixation [17], and secondary behavior 
[18], behavior of pedestrians, and cyclists in different scenarios through a data-driven method 
provides a solid foundation for developing evidence-based interventions that can effectively 
reduce the number of crashes, injuries, and fatalities on our roads.  

Project Scope and Objectives 
In this project, we first analyzed crash statistics at Virginia intersections; however, the scope of 
this research goes beyond mere analysis and extends to developing an innovative approach for 
real-time detection, tracking, and estimation of potential crash situations at intersections. The 
utilization of the Virginia Department of Transportation’s (VDOT) network of traffic video 
cameras enabled us to implement a graph neural network (GNN) machine learning (ML) model 
for this purpose. This study specifically focused on signalized intersections.  

By leveraging video footage from these cameras, we first deployed modern computer vision 
methods to detect and track traffic participants (e.g., car, pedestrian, bicycle, truck) in the scene. 
We then used geometric transformation methods to convert those trajectories in GPS format. This 
helped us in studying the kinematics of the traffic participants. We next developed a risk analysis 
method using a GNN. The risk analysis algorithm (i) extracts behavioral features from the 
kinematics in an aggregated roadway scenario where multiple roadway agents interact with each 
other; and (ii) uses the behavioral features along with infrastructural features to design a semi-
supervised ML model that defines road safety/risk in near real time. The ML model is expected to 
automatically identify a stable and safe traffic flow condition and differentiate it from safety-
critical roadway scenarios. The proposed GNN-based method aims to observe and analyze traffic 
flow patterns at intersections. Its objective is to identify potential events that may be safety critical. 
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Through the analysis of various parameters, such as vehicular speed, acceleration, and time to 
collision (TTC), the system can make predictions regarding these crash factors [19]. It is important 
to note that these crash factors are already documented in the Virginia FR300 report for each 
reported crash. This project addressed the following research questions: 

1. How do different roadway agents interact in high-conflict intersections? 
2. How does the kinematic behavior at any intersection affect the overall safety of the 

intersection? 
3. How can infrastructural elements and driver behavior in roadway safety be modeled? 
4. Can a graph-based model be used to model a traffic scene and include all dynamic 

and static components?  
5. How effective are traffic cameras in continuous monitoring of traffic and safety 

analysis in real time? 

Graph-based Analysis of Traffic at Intersections 
The inherent complexity of traffic scenes, where numerous elements dynamically interact within 
the confines of road networks, demands a modeling framework that can effectively capture these 
intricate relationships and aggregate over time. Graph-based systems offer an ideal solution due to 
their capacity to represent interconnected entities and their interactions. In traffic scenarios, 
vehicles, pedestrians, roadways, and signals can all be represented as nodes, while the edges 
between them depict the various relationships and dependencies. This representation enables 
quicker analysis, facilitates the utilization of graph theory algorithms, and enables the integration 
of contextual information. As a result, this holds the power to transform traffic management, 
enhance safety measures, and optimize transportation systems in the ever-growing congestion of 
urban environments. Figure 1 shows example of a traffic scene and its representation as a graph, 
where the graph captures the semantic interaction between the vehicles. The connection between 
the nodes (vehicles) is determined by their potential interactions. This interaction can be 
longitudinal (if the other vehicle is at the front or back of the ego vehicle), lateral (vehicle is at the 
left or right of the ego vehicle), or intersecting (there is a potential conflict inside the intersection 
while taking a turn). This modeling approach helps bring a physical construct of the traffic scene 
with its actors to a topological framework. This modeling facilitates the aggregation of information 
using advanced algorithms like a GNN.  

Literature Review 
Modeling intersection safety requires a proper amalgamation of multiple fields of research. 
Building on previous research related to intersection safety and modeling of roadway intersections, 
we have introduced a graph-based modeling technique to existing data sources and existing 
infrastructure systems. In this section, we summarize previous work in two major areas: 1) how to 
model a traffic scene with graph-based methods and GNNs; and 2) traffic safety analysis through 
advanced methods. To limit the scope of the project, we mainly focused on the most recent research 
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on graph-based methods. This includes work on scene graphs and methods summarizing 
spatiotemporal systems.  

 

Figure 1. Photo and graph. Modeling traffic using graphs: (a) vehicles labeled for one of the frames from the 
intersection drone footage from Blacksburg, VA; (b) semantic scene graph for the drone image. Different 
colored edges indicate different types of edges: Longitudinal (red), lateral (blue), and intersecting (green). 

Traffic Scene Representation as a Graph 
A “graph” stands as a fundamental and versatile abstract data structure. Graphs provide a powerful 
framework for representing and analyzing relationships or connections between various entities, 
making them a cornerstone in solving complex problems. In essence, a graph consists of a 
collection of nodes (vertices) and the connections (edges) that link these nodes together. The 
choice of nodes and edges and their characteristics are design parameters to engineers. In recent 
years, researchers have used different combinations of objects, including vehicles, buildings, 
pedestrians, bicycles, road elements, and roadside elements, as nodes for modeling [20-24]. As a 
result, pedestrians and bicycles mainly exhibit topological relationships with roadside elements. 
On the other hand, vehicles establish multiple relationships with different object types. These 
relationships encompass topological relations, relative orientation, relative trajectories, relative 
speed, metric relations, and order relations. Additionally, vehicles also establish connections with 
structures (such as lane dividers, signboards, traffic signals, and guardrails), road segments 
(including crosswalks, edge lines, stop lines, center lines, etc.), roadsides, intersections, and road 
markings. By incorporating these diverse relationships, these models provide a comprehensive 
representation of the intricate interactions between vehicles and their surroundings. Most 
researchers have used these objects as nodes. While most studies have reported a 2D representation 
of the systems, Zhang et al. [25] used 3D modeling of the traffic scene. Edges are modeled to 
represent the relationship between the objects. These can be their relative positions, velocities, 
region connection calculus (RCC) , relative orientation, relative trajectories, relative speed, 
quantitative distance, and order relations [23, 24].  

A road scene can be complex depending on many factors. Inclusion of all these elements may not 
be trivial. To effectively handle graphs composed of subgraphs that do not have significant 
influence on each other, two approaches are employed. The first approach involves dividing the 
road into smaller sections, allowing the creation of multiple graphs. These individual graphs can 
then be connected, forming subgraphs that collectively make up a larger graph. The second 
approach involves dividing the road segment into non-overlapping sectors. This division can be 
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based on either the sector length or the road geometry itself. By implementing this division, the 
road segment is explicitly represented as distinct bidirectional carriageways, which may consist of 
single or multiple lanes. These graphs are used through different ontologies and classification 
methods. This differs by their scale. Typical classification is node-based classification (behavior 
of each object), edge classification (relation between two objects/elements), and graph 
classification (subset of the road segment with all its element).  

Traffic Safety Analysis  
Computer vision and advanced ML have been widely used for traffic safety analysis and 
prediction. Chen et al. [26] utilized high-resolution video from traffic cameras, transformed the 
data into a top-down perspective to facilitate object detection and tracking in small road segments, 
and computed safety metrics. Candela et al. [27] employed a GNN to enhance vehicle trajectory 
prediction, subsequently assessing potential collisions. Glasmacher et al. [28] defined three traffic 
scenario scores, incorporating trajectory data, metadata, and a semantic map. These scores were 
combined across multiple layers for a comprehensive evaluation. Diehl et al. [22] utilized vehicle 
information to create features for nodes in a graph. A graph attention network (GAT) was 
employed to capture relevant interactions among vehicles. Malawade et al. [21] used real-time 
video feed analysis to predict the likelihood of collisions. This process involved scene-graph 
creation, spatiotemporal embedding modeling, and an Long Short Term Memory model for crash 
prediction. Furthermore, Mo et al. proposed a comprehensive framework [20] that considered 
individual dynamics, interactions, and road structure in predicting trajectories by placing each 
agent in its own coordinate system to eliminate coordinate shifting discrepancies. Finally, 
innovative risk estimation approaches using Gaussian mixture models and scenario safety 
forecasting models were discussed in Jin et al. [29] and Gang and Zhuping [30], respectively. 
Huang et al. [33] introduced a novel mechanism, rank influence learning (RIL), to address 
limitations in existing models for spatiotemporal forecasting using deep learning techniques. In 
this project, we adopted a scene graph-based method that considers dynamics of the traffic actors.  

Traffic Modeling Using Graphs 
Significant progress has been made in modeling traffic scenarios by adopting a graph-based 
approach. Graphs provide a versatile framework for representing and analyzing complex 
relationships among different elements in a system. In the context of traffic scenes, a graph-based 
representation enables the depiction of various entities as nodes and their interactions as edges. 

By constructing a graph representation of a traffic scene, it becomes easier to capture the spatial 
and temporal relationships between different participants. For instance, vehicles can be represented 
as nodes, and the edges can denote their proximity or interactions, such as overtaking or following. 
A graph-based system is object class agnostic; therefore, vulnerable road users including 
pedestrians and cyclists can also be incorporated into the graph as separate nodes, allowing a 
comprehensive representation of the entire traffic ecosystem. 



6 
 

The graph-based approach offers several advantages for analyzing traffic scenarios. First, it 
provides a more compact and structured representation compared to raw video frames. Instead of 
processing every pixel in each frame, the focus shifts to analyzing the relationships between nodes 
and edges in the graph, which reduces computational complexity. This enables faster analysis and 
extraction of relevant information. 

Second, the graph-based representation allows the application of various algorithms and 
techniques from graph theory to gain insights into traffic dynamics. For example, centrality 
measures can identify influential vehicles or nodes with high traffic density. Graph-based 
clustering algorithms can group similar entities together, helping to identify traffic patterns or 
anomalies. Additionally, graph-based simulations can predict the future behavior of traffic 
participants based on their interactions and historical data. Furthermore, the graph-based approach 
facilitates the integration of additional contextual information, such as road infrastructure data, 
traffic regulations, and historical traffic patterns. This enriched representation enhances the 
understanding of traffic scenarios and enables more accurate analysis and decision-making 
processes. 

Semantic Scene Graphs 
A scene graph is a hierarchical data structure commonly employed in computer graphics to 
represent objects within a scene. Unlike typical graphs, scene graphs possess a specific structure 
with parent-child relationships, rather than arbitrary connections between nodes and edges. Each 
node in a scene graph typically contains information about its position, orientation, scale, and other 
attributes that define its appearance and behavior in the scene. 

 

Figure 2. Graphs. (a) Example road intersection: intersections labeled with the different road segments, 
called “lanelets.” (b) Road graph for the road layout shown in (a) with different colors indicating different 

types of edges: consecutive (red), adjacent (blue), and overlapping (green). 

A semantic scene graph (SSG), on the other hand, is a specialized type of scene graph utilized in 
computer vision to represent a 3D scene in terms of its semantic meaning. In an SSG, every node 
corresponds to an object present in the scene and is labeled with a category or class of object, such 
as “car,” “person,” “bicycle,” and so on. 

Diverging from a regular scene graph, which solely encodes spatial relationships between objects, 
an SSG also captures functional and semantic relationships between objects. For instance, it might 
indicate that a “person” node is “driving” a “car” node or that a “cup” node is “on” a “table” node. 



7 
 

This supplementary semantic information can be leveraged to support an array of applications, 
including object recognition, scene comprehension, and task planning. 

Lanelet Map and the Road Graph 
A lanelet divides a road into smaller segments such that the physical road can be identified by a 
continuous set of indices. Each index represents each lanelet. This lets us use each small road 
segment, henceforward referred as lanelet, as a single node. These lanelets are homogeneous in 
nature and their physical attributes, which helps to create a set of roadway nodes for graph 
generation. Figure 2a presents the creation of a lanelet map by following the established protocol 
for generating standard bird’s-eye view datasets. Using the lanelets, we created a directed graph, 
as shown in Figure 2b. To construct the directed road graph, we followed the methodology outlined 
in Zipfl and Zöllner [32]. Each lanelet has been assigned a unique number for easy identification 
within the road graph. 

The graph consists of three types of edges, distinguished by color. Consecutive edges (red) indicate 
that two road segments/lanelets/nodes are positioned consecutively, with one following the other. 
These edges are unidirectional, as traffic can only flow in one direction through two consecutive 
road segments. Adjacent edges (blue) signify that two road segments are positioned next to each 
other. These edges are bidirectional, allowing traffic to move in both directions. Finally, 
overlapping edges (green) represent road segments that overlap or cross over each other, sharing 
a specific area of the road. These are also bidirectional in nature. 

Spatial Abstraction 
The position and pose of a vehicle in space can be influenced by various factors. In certain 
situations, a participant may have projections onto multiple road segments, particularly when the 
vehicle is changing lanes. This scenario is common at intersections where multiple road segments 
meet and overlap (Figure 3). To accurately represent these projections, each participant’s 
projection is aligned with the corresponding road segment’s Frenet coordinates [33]. 

 

Figure 3. Diagram. Spatial abstraction of a vehicle having projection onto three different road segments. 
Image source: Zipfl and Zöllner [62]. 

SSG Creation 
In the proposed system, despite participants having multiple projection identities, they are 
consolidated into a single object node. This ensures that all edges in the graph originate from and 
terminate at a single node. Let pab represent a path in the road graph Groad connecting two road 
segments va

road and vb
road (represented as nodes in the graph) where two projection identities ma

road 
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and mb
road exist. If all edges in pab are labeled as “consecutive,” it indicates a longitudinal relation 

(shown in red in Figure 4) between the two traffic participants i and j. 

 

Figure 4. Graphs. (a) Projecting traffic participants onto their corresponding lanelets; Vehicle 2 has multiple 
projections, as it is partially present in multiple lanelets. (b) Semantic scene graph for the example scenario 

shown in (a); each node represents an individual traffic participant from the scene, and different colors 
indicate edges with various semantic relations: longitudinal (red), lateral (blue), and intersecting (green). 

When vehicles travel in adjacent lanes, they are linked in the scene graph through a lateral 
relationship (shown in blue). This means that when a path pab exists between va

road and vb
road in 

Groad, where each edge in pab has the “consecutive” attribute and exactly one edge has the 
“adjacent” attribute, the corresponding traffic participants in the scene graph are labeled with the 
attribute krel = lateral. 

Intersecting (shown in green) traffic participants i and j (krel = intersecting) are those traveling in 
lanes that will either overlap or merge. This condition is met when there exists a path pab in Groad 
where each edge in pab is labeled either “consecutive” or “adjacent” and exactly one edge is labeled 
“overlapping.” It is important to note that once an edge with the “overlapping” attribute is included 
in pab, all subsequent edges must be reversed. 

To maintain a realistic representation, the length of the path |p| is limited (usually set to 30 meters). 
This prevents the inclusion of edges between traffic participants that are significantly distant from 
each other.  

Data Collection and Processing 
This section includes the methodology employed to create a graph-based model solely from 
infrastructure cameras. First, we introduce the traffic camera dataset and selection of intersections. 
Next, we discuss the computational process that used computer vision and roadway structure 
information. The computer vision process included object detection, object tracking, and 
homography transformation. The detection and tracking methods provided trajectory information 
for each dynamic actor on the road in an image coordinate system. The homography transformation 
helped convert the image pixel information to GPS coordinates. Next, we used the roadway 
information, including from OpenStreetMap (OSM), to model each intersection into a lanelet-
based structure. This allowed us to relate an object to the structure of the road.  
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Selection of High-risk Intersections 
We utilized publicly available datasets, including the VDOT Crash Analysis Tool website and 
virginiaroads.org containing crash statistics, to analyze and identify (a) intersections with a history 
of high crash occurrence and (b) another set of intersections with a history of low crash occurrence 
but high vehicle volume. We shortlisted two sets of intersections with similar traffic volumes. The 
first set had a history of high crash occurrence, while the second set had low crash occurrence. 
Distribution of severe crashes was compared with respect to the multiple parameters obtained from 
the crash database, including time of day (by hour), day of week, and month of year,  

The riskiest five intersections were obtained from the Virginia cities of Portsmouth (1), Hampton 
(3), and Newport News (1). The team located other high-risk intersections in Virginia Beach, 
Richmond, and Fairfax. We selected a total of 20 (comprised of 10 high-crash and 10 low-crash) 
intersections for further inspection. In addition to their rankings, additional parameters such as the 
number of lanes and average annual traffic volume were considered during the inspection process:  

i. Signalized control (i.e., controlled by traffic lights)  
ii. At least 20-25 lanes (incoming and outgoing combined)  

iii. Moderate/heavy annual average daily traffic volume (estimated, >20,000) 

We further used the GPS locations of the cameras and the crash locations to verify the selection of 
the intersection. In this report, we present our analysis of the VT-CAST (Traffic Cameras for 
Advanced Safety Technologies) 2020 dataset [34]. Traffic cameras spread throughout Virginia 
stream live video feeds on the VDOT server. These streams are recorded in segments of 1-hour 
videos to form the dataset. These cameras are positioned to capture a wide field of view and offer 
an oblique perspective that allows visibility of the surrounding road area. While the cameras do 
not provide a top-down view, they ensure comprehensive monitoring of traffic conditions. The 
cameras solely offer raw video feeds and do not provide specific information regarding the 
kinematics or movement patterns of the traffic participants in the observed scenario. 

As this project used camera data, we further used the camera quality and movement as selection 
criteria. We manually reviewed and selected camera data to check whether the data was valid. 
Often cameras are rotated and do not capture the traffic intersection and traffic dynamics. We 
chose only those videos that captured relevant information. A more detailed analysis of the data 
collection and intersection selection can be found in Appendix C: Virginia Intersection Data.  

Object Detection and Tracking 
Object detection and tracking play a crucial role in determining the precise location of participants 
through the identification of bounding boxes [35] . However, in scenarios where the video quality 
is poor, the object detection process is prone to generating both false positives and false negatives. 
Research shows that transfer learning can help overcome this challenge [17, 18, 36 – 38], partially, 
hence shows promises. However, it becomes necessary to explore and evaluate different 
algorithms to obtain the most effective model. We tested a total of three algorithms: (a) 

http://virginiaroads.org/
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MMDetection + Graph Convolutional Neural Network Match (GCNNMatch) [39-41]; (b) Global 
Tracking Transformer (GTR) [42] ; and (c) YOLOv7 + BoT-SORT [43, 44] (Simple Online and 
Realtime Tracking; more details can be found in Appendix A: Object Detection and Tracking). 
The primary objective of object detection and tracking is to accurately identify and locate 
participants within a given video. This task involves detecting objects of interest, such as vehicles, 
pedestrians, or other relevant entities, and creating bounding boxes around them. Figure 5a shows 
an example of the object detector and tracker.  

The participant’s approximate position can be best estimated by identifying the point closest to the 
ground. When working with data from a monocular camera, it is not possible to construct a 3D 
bounding box with a ground plane. Therefore, we obtained an estimation of each participant’s 
position by considering the midpoint of the lowermost edge of the bounding box (see Figure 5b). 
This approximation allows us to represent a participant with a single point, minimizing noise. This 
approach is superior to using the centroid of bounding boxes, as the centroid may be elevated from 
the ground, resulting in an inaccurate representation of the participants’ positions. 

 

Figure 5. Video images. Examples of (a) object detection and tracking and (b) centroid detection to identify 
their ground location. 

Pixel-to-GPS Transformation 
Pixel-to-GPS conversion involves transforming an image captured by a camera into geographic 
coordinates using GPS data. This technique is widely used in the field of remote sensing and allows 
researchers to obtain precise geolocation information from satellite or aerial imagery. This method 
maps any pixel in the camera into a GPS coordinate. In this effort, we first made manual 
annotations between the Google Earth view of an intersection and an image of the same 
intersection from the camera. Then, we computed a homography matrix that transformed the image 
pixels to a Google Earth image. This helped to identify the GPS position of a traffic actor when it 
is identified in a specific pixel location. Figure 6 shows an example of the point-based matching 
between the two views.  
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Figure 6. Photo and video image. Matching points from the Google Maps top-down view (left) and camera 
view (right) for homography computation. 

Lanelet Design of an Intersection 
Next, we used the Lanelet2 [45] library to segment the road structure into smaller segments (i.e., 
lanelets). This would allow us to model the roadway as a graph with node-edge formulation where 
each node is homogeneous in nature. We additionally used OSM [46] and JOSM (Java 
OpenStreetMap Editor) [47]. OSM is an inclusive and collaborative mapping initiative that strives 
to develop a comprehensive, freely accessible map of the entire world. JOSM helps to build an 
additional map from the information received from OSM, including GPS. We used these tools and 
libraries to manually annotate intersections into smaller segments.  

The core data structure in the Lanelet2 library is the lanelet, which represents an individual drivable 
lane on the road. Each lanelet can be visualized as a segment of the road that includes its left and 
right boundaries, determining the flow of traffic. Moreover, each boundary is assigned a property 
of “virtual” or “road boundary.” The virtual property means that the boundary is between two sets 
of lanes moving in the same or opposite direction. The road boundary property means that the 
boundary is between a road and a non-road surface. These boundaries are not mere lines but are 
additionally annotated with relevant associated traffic rules. This comprehensive annotation 
approach enables the Lanelet2 model to provide a nuanced and thorough understanding of the road 
environment. 

 

Figure 7. Aerial photo. Lanelets created for one of the risky intersections in Virginia Beach. 



12 
 

Figure 7 shows the lanelet maps created for one of the risky intersections in Virginia Beach. The 
map has been overlayed on Bing Maps aerial imagery to better visualize the lanelets according to 
the actual road structure. Next, we utilized Frenet coordinates (See Appendix D: Technical 
Background), which offer a more intuitive representation of a position on a road compared to the 
traditional Cartesian coordinates. By utilizing these concepts, we can accurately represent the 
position of vehicles on the road using Frenet coordinates. 

Safety Analysis of Intersection Using a GNN 
In this section, we introduce a modeling technique for traffic safety using a GNN. We used the 
graph structure and kinematic feature extraction methods introduced in the previous sections and 
integrated them to develop a safety score. Finally, using real-world intersection data, we 
demonstrated the effectiveness of the safety modeling. Figure 8 shows the full schematic depicting 
the components and features that we used to derive the risk score model.  

 

Figure 8. Diagram. Comprehensive overview of the entire pipeline for our proposed approach. 

GNNs 
GNNs have gained widespread use across various domains due to their ability to learn from data 
modeled as a graph or network data with nodes and edges. Over the past few years, there has been 
a significant surge in the growth and application of GNN models. A GNN is a dedicated neural 
network model that is created only for graphs. GNNs have gained prominence owing to their ability 
to effectively capture intricate relationships and dependencies within graph-structured data, which 
is prevalent in numerous real-world scenarios such as social networks, recommendation systems, 
and biological networks. A GNN operates by aggregating information from a node’s neighbors 
and iteratively updating node representations, allowing it to learn complex patterns and features 
inherent in the graph. This dynamic, recursive nature of GNNs enables them to perform tasks such 
as node classification, link prediction, and graph classification. One major advantage of GNNs is 
that the training is transferable across structures. Once the GNN is trained on a specific set of the 
training graphs or domain, the learnings are transferable to similar graphs and domains. This 
characteristic makes it useful for applications like traffic scenes, where we can train on a set of 
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intersections, and then transfer the knowledge onto other intersections. Also, a GNN does not need 
enormous amounts of data like other deep neural network models do.  

Model Selection 
Selecting the appropriate GNN capable of integrating node and edge embedding information is of 
utmost significance. In our research, we relied upon the GNN cheat sheet offered by PyG [48] as 
a valuable reference. For this work, we selected two state-of-the-art models: TransformerConv and 
GINEConv (Graph Isomorphism Network with Edges). TransformerConv is a novel attention-
based model that was proposed in Shi et al. [49]. It is designed to be more efficient and effective 
than traditional attention mechanisms for graph-structured data. GINEConv [50] is a graph 
convolutional neural network (GCNN) that uses a novel message passing mechanism to aggregate 
node features. The message passing mechanism is based on the Graph Isomorphism Network 
(GIN) [51], but it also incorporates edge features. This allows GINEConv to learn more complex 
representations of graphs than GNNs that do not use edge features.  

Results and Discussion 

Node and Link Features in Elementary Graph 
To assess the traffic density of a specific traffic scene, we employed a simplified graph 
representation. We adopted this approach due to the presence of multiple edges with distinct 
properties between two nodes in the SSG, where network theory concepts fail to differentiate 
between these various edge types. As a result, we employed a preliminary method that established 
connections between a node and other nodes within its vicinity. In this graph, each node represents 
a traffic participant, and edges are established between any two distinct traffic participants (u, v) 
if their mutual Euclidean distance is less than a predefined margin value (see Figure 9).  

 

Figure 9. Diagram. Creation of a graph structure using roadway participants. 

Table 1 and Table 2 present the node and link features, respectively, for one of the intersections in 
Virginia. This particular intersection has a documented history of a high frequency of crashes. The 
node and edge features provided in the tables were obtained from a 50-minute video feed captured 
during the afternoon. The distance margin was chosen as 10 meters for creating the graph, as 10 
meters approximates 1 second of headway for a 25-mph road. Based on the obtained graph, these 
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features were calculated. The details of all measures in the tables can be found in Appendix E: 
Network Theory.  

Table 1. Average Values for Various Node-level Features such as Degree, Centrality, and Clustering 
Coefficient Computed for One of the Videos from the VDOT Database 

Node Count Degree Centrality Clustering 
coefficient 

Eigenvector Betweenness Closeness 
Car 8177 2.48659 0.18796 0.03496 0.24433 0.32658 

Truck/Bus 3110 2.57098 0.21295 0.02449 0.25161 0.3795 
Pedestrian 120 1.46054 0.10737 0.016178 0.18812 0.25529 

Bicycle 23 4.81395 0.19966 0.05233 0.41798 0.42497 
Motorcycle 23 2.6279 0.24813 0.05588 0.3292 0.40337 

Table 1 presents some interesting characteristics about the traffic scene; it is evident that cars, 
trucks, and motorcyclists typically have an average degree of approximately 2.5. This suggests 
that, on average, they are surrounded by two to three other vehicles or traffic participants. On the 
other hand, bicyclists have a higher degree because they share edges with both pedestrians and 
vehicles. Consequently, cyclists are generally at a higher risk, as they have a greater number of 
traffic participants in proximity. 

Moreover, among all the road users, bicyclists experience the least amount of safety. This is 
primarily due to their higher exposure to nearby traffic participants and the inherent risks 
associated with sharing the road with vehicles. In contrast, pedestrians typically walk on sidewalks 
and thus have the fewest number of connections or edges with other participants. Additionally, it 
appears that there are only a limited number of pedestrians captured in the video data. 

Eigenvector centrality measures a traffic participant’s significance within a network. Examining 
Table 1, it becomes evident that pedestrians hold the lowest influence on the network, while other 
participants exhibit relatively comparable levels of influence. Notably, motorcyclists emerge as 
the group with the most substantial impact. 

Closeness centrality is a measure that quantifies how close a traffic participant is to other 
participants within a network. It is calculated based on the distances between the participant and 
all other participants. Here, distance is the length of the shortest path between two nodes in the 
graph. The distance is based on an adjacency matrix where two nodes connected directly have a 
distance of 1, and so on. The values of closeness centrality follow a similar trend as the average 
degree for different traffic participants in the network. 

The clustering coefficient is a measure that indicates the tendency of nodes in a network to form 
clusters or groups. It is observed that bicycles exhibit the highest tendency to form clusters, 
followed by motorcycles. In contrast, pedestrians have the least inclination to form such clusters. 
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Table 2. Average Values for Various Link-level Features such as Jaccard’s Coefficient, Adamic-Adar Index, 
and Katz Index Computed for One of the Videos from the VDOT Database 

Node 1 Node 2 Jaccard Adamic-Adar 
Bicycle Car 0.20755 0.85407 
Bicycle Pedestrian 0.05555 0.2103 
Bicycle Truck/Bus 0.19010 0.89363 

Car Car 0.2341 0.82552 
Car Motorcycle 0.21041 0.72338 
Car Pedestrian 0.191915 0.5831 
Car Truck/Bus 0.25405 0.89782 

Motorcycle Pedestrian 0.03809 0.16156 
Motorcycle Truck/Bus 0.2 0.63092 
Pedestrian Truck/Bus 0.12771 0.43341 
Truck/Bus Truck/Bus 0.29414 0.99186 

Based on the local-overlap data (Jaccard’s coefficient and Adamic-Adar index) presented in Table 
2, motorcycles and pedestrians, and bicycles and pedestrians have the least number of edges with 
common traffic participants. This could be because most of the edges of traffic participants are 
with cars, given the high number of cars in the video. The values for the various other node types 
are very similar. It is additionally observed that in the case when two trucks/buses are present in 
the frame, there are more common traffic participants than usual.  

The Katz index is typically used in network analysis to measure similarity or overlap between 
nodes based on their connectivity patterns within a network. It is commonly applied to social 
networks, where nodes represent individuals and edges represent relationships between them. In 
such networks, the Katz index can capture the degree of similarity or overlap in terms of shared 
connections. However, in a traffic network, where nodes represent traffic participants and edges 
represent proximity, the concept of similarity or overlap between nodes may not be meaningful in 
the same way. In this context, the focus is on proximity and interaction between participants rather 
than shared connections. In traffic networks, other measures such as traffic flow, congestion, 
shortest paths, or centrality measures like betweenness centrality or closeness centrality may be 
more relevant for understanding the dynamics and efficiency of the network.  

Risk Score Design Using Traffic Dynamics 
From the VT-CAST 2020 dataset, we carefully chose two intersections for our study. One of these 
intersections had a significant history of crashes, making it statistically notable. Conversely, the 
other intersection had a minimal record of past crashes. To ensure a comprehensive analysis, we 
selected three videos from each intersection. For the training subset, we utilized two videos from 
each intersection, while one video from each intersection was allocated to the test subset. To 
maintain consistency, all videos were recorded at a frame rate of 15 frames per second.  
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Given our specific focus on intersections, we concentrated on consolidating data related to 
overspeeding, rapid acceleration, rapid deceleration, and the number of traffic rule violations 
concerning TTC and post-encroachment time (PET). More details on the safety metrics can be 
found in Appendix D: Technical Background. These various factors were combined to assign a 
binary label, either “risky” or “non-risky,” to each frame in the dataset. Equation 1 shows the 
combination of the different safety parameters used to define the risky or non-risky label. The 
variable 𝑐𝑐𝑓𝑓 denotes the class label for a frame f from the video. A value of 1 denotes that the 
situation is risky, and 0 denotes that it is non-risky. 

𝒄𝒄𝒇𝒇  =   𝐦𝐦𝐦𝐦𝐦𝐦�𝟏𝟏,  𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇(𝟎𝟎.𝟓𝟓 × 𝒏𝒏𝑷𝑷𝑷𝑷𝑷𝑷  +  𝟎𝟎.𝟐𝟐𝟐𝟐 × 𝒏𝒏𝑻𝑻𝑻𝑻𝑻𝑻  +  𝟎𝟎.𝟓𝟓 × 𝒏𝒏𝑮𝑮  +  𝟎𝟎.𝟓𝟓 × 𝒏𝒏𝑺𝑺)� [1] 

Here, we define the variables as follows: 𝑛𝑛𝑃𝑃𝑃𝑃𝑃𝑃 represents the count of vehicles violating the PET 
metric, and 𝑛𝑛𝑇𝑇𝑇𝑇𝑇𝑇 represents the count of vehicles violating the TTC metric. It is important to note 
that both 𝑛𝑛𝑃𝑃𝑃𝑃𝑃𝑃  and 𝑛𝑛𝑇𝑇𝑇𝑇𝑇𝑇  will always be multiples of 2, as these metrics involve two vehicles. 
Additionally, we have 𝑛𝑛𝐺𝐺  and 𝑛𝑛𝐶𝐶indicating the number of vehicles engaging in rapid acceleration 
or deceleration and overspeeding, respectively. The ratios for the different parameters are carefully 
selected to ensure that a single collision-prone situation is enough to label the entire frame as 
unsafe. If there is even one violation of the TTC metric, involving two vehicles, the situation is 
classified as risky regardless of the status of other metrics. However, a TTC violation is taken into 
account in conjunction with factors such as overspeeding, rapid acceleration, or deceleration. This 
is because TTC violations commonly occur in intersection scenarios. If the TTC value is violated 
along with either excessive speed or abrupt acceleration, the situation can be considered unsafe. 
The thresholds are shown in Table 3.  

Table 3. Thresholds for Intersection Scenarios 

TTC PET Acceleration Deceleration 
2 sec 1.5 sec 0.6 g 0.5 g 

Node and Edge Features 
A graph was created to represent each frame of both the training and test dataset splits. To create 
the SSG structure, we adopted the method proposed by Zipfl and Zöllner [32]. Once the structure 
was established, we assigned node and edge features. In this graph, each traffic participant 
corresponded to a node, and we represented each node embedding with a 9-dimensional feature 
vector. 

The feature vector for each node consists of the following components: the first four elements 
encode the participant class using one-hot encoding, representing pedestrian, bike, truck/bus, or 
car. The remaining elements in the vector represent the magnitude of velocity, the x-component of 
velocity, the y-component of velocity, and the length and width of the participant. Equation 2 
provides a clear representation of this feature vector. 
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𝒖𝒖 =  [𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊, 𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊, 𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊, 𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊, |𝒗𝒗|,𝒗𝒗𝒗𝒗,𝒗𝒗𝒗𝒗, 𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍,𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘] [2] 

Additionally, the edges in the representation are characterized by a 6-dimensional feature vector. 
Within this vector, the elements at odd indices serve as one-hot representations indicating whether 
the edge is longitudinal or not, lateral or not, or intersecting or not (Figure 9). On the other hand, 
the even-indexed elements correspond to the distances between the two participants specifically 
for each edge type. It is important to highlight that these distances are not measured in terms of 
Euclidean distance, but rather they reflect the distances along the curve of the road. If that type of 
edge does not exist, the corresponding distance value in the feature vector is simply zero. Equation 
3 provides a clear representation of this feature vector.  

𝒆𝒆 =  [𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊, |𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅|, 𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊, |𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅|, 𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊, |𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅|] [3] 
Creating the Dataset 
The dataset was meticulously constructed by sequentially selecting approximately 2,000 
timestamps for the training dataset and around 1,500 timestamps for the test dataset from one risky 
and one non-risky Virginia Beach intersection. The videos were chosen with the best lighting and 
under normal weather conditions, as the videos already have a low-resolution, and we did not want 
to introduce additional noise. The chosen intersections have their respective camera directly facing 
one of the roads leading to the intersection, which also covers vehicles entering and leaving the 
intersection. Because the videos were recorded at a frame rate of 15 frames per second, we obtained 
one frame (timestamp) approximately every 66.67 seconds. Given our specific focus on 
intersections, we determined that under-speeding had limited relevance for our analysis. Instead, 
we concentrated on consolidating data related to overspeeding, rapid acceleration, rapid 
deceleration, and the number of TTC and PET traffic rule violations. These various factors were 
combined to assign a binary label, either risky or non-risky, to each frame in the dataset. 

Risk Estimation Using SSGs 
Next, we trained the GNN to estimate the risk of any intersection. A hyperparameter search was 
conducted for both selected models, and the best results obtained with the optimal hyperparameters 
are summarized in Table 4. This includes a total of approximately 80,000 frames of video. For 
each frame, we created a semantic graph and used them for classification. All models were trained 
for 100 epochs on a Linux machine with a 16-GB Nvidia V100 GPU. Figure 10 shows the 
confusion matrix of classifications for the GINEConv model.  

Table 4. Comparison of Performance on the VT-CAST 2020 Dataset Against Two State-of-the-art GNN-
based Methods 

Performance Metric TransformerConv [72] GINEConv [73] 

Accuracy 72.9% 79.85% 

An important hyperparameter to consider when optimizing a GNN model is the number of layers. 
This parameter determines the extent to which a node can gather information from its neighboring 
nodes and the corresponding edges. When the number of layers is set to 1, the network can only 
aggregate information from its immediate neighbors, which constitutes a one-hop neighborhood. 
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On the other hand, if the number of layers is set to 2, a node can gather information not only from 
its direct neighbors but also from the neighbors of its neighbors, expanding the reach of 
information aggregation. In this work, we obtained the optimal number of layers as 3 for the 
GINEConv model, and 2 for the TransformerConv model. Although attention mechanisms from 
TransformerConv enable the model to selectively prioritize information from node and edge 
embeddings, it has been observed that convolutional approaches, GINEConv in particular, yield 
significantly superior performance. This discrepancy can be attributed to the relatively low 
dimensionality of the input data (node and feature embeddings). 

 

Figure 10. Confusion matrix for the GINEConv method evaluated on the VT-CAST 2020 dataset. The ground 
truth labels are on the horizontal axis, and the predicted labels are on the vertical axis. 

Conclusions 
In this project, we have proposed a new analysis method to study traffic intersection safety using 
a GNN and existing camera infrastructure. Traffic fatalities and crashes at intersections are a 
burning issue and need attention. With the ever-evolving traffic dynamics, higher traffic volume, 
and impending deployment of automated driving systems, it is important to develop a 
comprehensive method that can automatically analyze safety at intersection in real time. Over the 
last two decades, many researchers have focused on using camera-based data to study traffic at 
intersections. In this work, we specifically showed how information from infrastructure cameras 
can be used for traffic safety monitoring. These cameras have the capabilities to capture a plethora 
of information; however, we still lack constructive methods to convert this information to traffic 
safety-related features and practical applications for the benefit of the public.  

Key Contributions 
Use of computer vision: In this project, we first showed how modern computer vision methods 
can be used to process traffic videos in real time. As deep neural networks can operate in real time, 
several methods can be used to identify and track traffic objects. With the help of computer vision, 
this information can also be used to find out the kinematics of each of the objects. In recent times, 
many commercial systems are available that use high quality images (e.g., MioVision). However, 
these deployments can be costly. In this project, our focus has been traffic cameras that are already 
deployed in the intersection. We have shown that computer vision can enhance the potential of 
these cameras and be used for automatic detection and tracking of traffic participants.  

Modeling of object interactions using graph: Next, we showed how the interaction of these 
objects can be modeled through a graph-based method. We have demonstrated a method that can 
help in modeling the traffic as well as the roadway network separately. This helps us to model all 
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possible traffic actors, all possible traffic configurations, and all possible roadway designs. 
Therefore, this method introduces a generalized approach to model traffic that opens up enormous 
potential for research in the field of traffic modeling. Modeling traffic using graphs also provides 
key information about traffic characteristics and the impact of each actor (vehicle, pedestrians, 
etc.) through simple graph analysis (see Appendix E: Network Theory).  

Safety prediction and analysis using GNN: Next, we proposed a new safety assessment method 
that uses a GNN and provides risk assessment of any intersection. Graphs were utilized to depict 
absolute and relative kinematic parameters. By examining the dynamic changes within these 
graphs, it became possible to forecast potential traffic characteristics and anomalies and identify 
risky situations. For instance, a contracting graph indicated the presence of traffic congestion, 
whereas an expanding graph indicated an increased separation distance between vehicles in a 
particular area. Modeling of traffic through graphs also shows the relative importance and 
vulnerability of each participant, including vulnerable road users. As we lacked enough 
annotations for safety critical events, we presented a semi-supervised method. Finally, we 
presented experimental results through real intersection traffic data on how safety features are 
computed using the proposed model. The code is made available at the GitHub repository 
referenced at the end of this report.  

Discussion and Recommendations 
In this project, we have demonstrated how traffic cameras, computer vision, and a GNN can be 
used to define safety for dynamic traffic in real time. The field of ML has shown progress in 
processing complex data structure efficiently. While the process shows tremendous promise in 
automating safety assessment, this section provides our recommendations to enhance the 
performance of this model. These recommendations relate to the sensor quality, effect of noise, 
environmental uncertainty, modeling assumptions, and practical limitations.  

Image quality and noise: The current camera infrastructure, characterized by its low resolution 
of 320x240, falls significantly short of meeting the demands of modern imaging needs. This 
limitation becomes particularly evident as the cameras frequently lose focus in various situations. 
Moreover, the image quality deteriorates further under challenging conditions such as low-light 
environments during nighttime or adverse weather conditions like rain. As a result, the existing 
camera infrastructure struggles to provide clear and detailed visuals, hindering its effectiveness 
and reliability. 

Upgrading the cameras to higher resolutions would greatly improve the clarity and level of detail 
in captured images and videos. This enhancement would enable better identification and 
recognition of traffic participants. Incorporating image sensors with improved low-light 
performance, such as larger pixel sizes or backside-illuminated (BSI) sensors, would significantly 
reduce noise and enhance image quality in dimly lit environments. This enhancement would enable 
cameras to capture detailed visuals even during nighttime or in poorly lit areas. Another 
improvement could be changing the video compression. Due to limited bandwidth, high 
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compression is used. This significantly affects the performance of computer vision algorithms. 
Facilitating better compression algorithms may significantly improve performance.  

Sensor field of view and completeness: Most of the intersection cameras capture the dynamics 
of the intersection partially. Often only one camera is installed at an intersection. This does not 
provide complete information of the traffic dynamics from all directions. This limits the capability 
of any automated method to identify risks at all sides of the signalized intersection. Also, the field 
of view for the cameras is often narrow. An ideal solution would deploying a system that can 
provide a bird’s-eye view of the intersection. By employing drones to capture datasets at local 
intersections, we can acquire a refined dataset that offers improved quality, cleanliness, and 
minimal noise. This dataset would serve as a valuable resource for evaluating traffic behavior. 

Adequate annotations of safety critical events: While sensor data is one major challenge for 
automated risk prediction, we lack enough annotated data that depicts safety. As most of our 
research is based on crash statistics and police accident reports, we lack data specifically indicating 
whether a given scenario is unsafe or prone to crashes. In this project, we relied on spatial and 
temporal metrics derived from traffic forecasting and proposed a semi-supervised approach. 
Nevertheless, these models are built on various assumptions, such as vehicle trajectory and 
maintenance, which means we lack an accurate representation of what constitutes an unsafe 
scenario. Furthermore, these metrics can limit the representation for all types of conflicts, focusing 
on those resulting from vehicles crossing the same area or following closely behind one another. 

Advanced safety metric design: The current project used basic safety measures like TTC, PET, 
and speed behavior. In recent years, more advanced safety features including responsibility 
sensitive safety [52, 53] have been proposed. These measures can help in detailed safety scores. 

Additional Products 

Education and Workforce Development Products 
The outcome of this project will be condensed into a guest lecture presented at VTTI to Dr. Zachary 
Doerzaph’s graduate class on advanced vehicle technologies. Dr. Sarkar will deliver this lecture 
during Fall 2023. The team is planning to propose a workshop on traffic safety challenges in 
intersections using aerial imagery during the upcoming IEEE Intelligent Vehicle Symposium, 
2024. Currently, it is planned in collaboration with Tsinghua University.  

Technology Transfer Products 
The project has produced a master’s thesis, a new drone-based dataset, and a public codebase. One 
paper is also submitted to the Transportation Research Board, and it is currently under review. A 
journal submission has been planned in IEEE Transaction on Intelligent Transportation Systems, 
and it will be submitted in Fall 2023. Two chapters were developed through this project in the 
master’s thesis of Akash Sonth [54].  
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Public GitHub repository of the code: https://github.com/VTTI/GNN-based-intersection-safety 

Data Products  
Finally, we developed a new drone dataset that covers four signalized intersections in Blacksburg, 
VA. This data also includes annotations of objects and signal states for all four directions. Videos 
are around 30 minutes long. The data also includes signal information from two different cameras. 
We thank Professor Hong Wang from Tsinghua University for providing annotations. Part of the 
data is released with this project. The final data will be updated by end of this year (more details 
in Appendix F: New Drone Data from Virginia, and discussion of the benefits and prior work is 
available in Appendix B: Drone-based Traffic Dataset). The project has generated one dataset. 
This dataset contains aerial video of four intersections in Blacksburg, VA.  
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Appendix A: Object Detection and Tracking 
Appendix A summarizes different object detector and tracker combinations and their testing results 
on the VT-CAST dataset and processing strategies using Oracle cloud service.  

Object Detection and Tracking Algorithms 
Table 5. Qualitative Comparison and Computational Complexity for Various Object Detection and Tracking 

Algorithms 

Method Performance Limitations Inference 
Speed 

MMDetection + 
GCNNMatch 

Combination performs excellently with 
the VDOT dataset, successfully tracking 

vehicles in various traffic scenarios. 

Challenges arise when 
tracking very small or quickly 

moving vehicles. 

12x 

GTR (Global 
Tracking 

Transformer) 

Decently performs on the VDOT dataset 
and can track objects in long sequences. 

Struggles to track smaller 
objects consistently due to the 

lower quality of videos. 

4x 

YOLOv7 + BoT-
SORT 

YOLOv7 effectively detects small objects 
in lower resolution, making the pair 
efficient and accurate on the VDOT 

dataset. 

Some smaller objects are not 
tracked properly. 

1x 

We used Oracle Cloud Infrastructure (OCI) to process the video data for object detection and 
tracking.  

MMDetection + GCNNMatch 
MMDetection [39] is a highly regarded open-source deep learning toolbox designed specifically 
for object detection tasks. Developed as part of the OpenMMLab project by the Multimedia 
Laboratory at CUHK, MMDetection offers a range of efficient and accurate detection methods 
that achieve state-of-the-art performance. This library has gained significant popularity within the 
artificial intelligence community due to its exceptional flexibility, extensibility, and 
comprehensive support for multiple detection frameworks. With its capabilities, MMDetection 
proves to be an ideal choice for VDOT’s dataset, and it has been trained on the extensive Second 
Strategic Highway Research Program Naturalistic Driving Study dataset for object detection. 
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GCNNMatch (Graph Convolutional Neural Network Match) [40, 41] is an advanced tracking 
algorithm that leverages the power of GCNNs. The primary objective of GCNNMatch is to provide 
a robust mechanism for tracking objects across frames, effectively tackling challenges such as 
occlusions, changes in appearance, and unpredictable motion. By utilizing a graph convolution-
based approach, GCNNMatch excels at handling variations in object appearance over time, as well 
as overcoming occlusions and other complexities encountered in video frames. Notably, 
GCNNMatch has demonstrated exceptional tracking performance on a variety of traffic scenarios 
captured in the VDOT dataset. 

However, the study examining GCNNMatch’s performance also identified certain limitations of 
the algorithm. For instance, it struggled to track vehicles that were extremely small or moving at 
high speeds. Despite its overall effectiveness, these specific scenarios posed challenges for 
GCNNMatch’s tracking capabilities. 

 

Figure 11. Video image. Sample result on a VDOT video demonstrating object detection with MMDetection 
[51], followed by tracking using GCNNMatch [52]. 

GTR  
GTR [42], a cutting-edge transformer-based architecture, revolutionizes global multi-object 
tracking by effectively generating global trajectories for all objects in a short sequence of frames. 
The process begins with object detection in each frame, followed by encoding the detected objects 
into feature vectors. These feature vectors are then inputted into a global tracking transformer, 
which learns to associate the vectors across frames, ultimately producing accurate global 
trajectories for each object. 
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One of the notable advantages of GTR is its ability to be jointly trained with an object detector. 
This unique characteristic enables GTR to simultaneously learn object detection and tracking, 
distinguishing it from traditional methods that typically rely on separate models. As a result, GTR 
achieves enhanced efficiency and outperforms previous tracking approaches, evident by its state-
of-the-art performance on the MOT17 benchmark. Furthermore, GTR exhibits proficiency in 
tracking objects in extended sequences, providing reliable results in long-duration scenarios. 

While GTR demonstrates impressive performance on the VDOT dataset, it faces challenges when 
consistently tracking smaller objects due to the lower quality of videos. It is also a bit harder for 
the algorithm to maintain a high frames per second rate during longer video inference, taking a lot 
of time to process extended footage. 

 

Figure 12. Video image. Sample result on a VDOT video demonstrating object detection and tracking using 
GTR [53]. 

YOLOv7 + BoT-SORT 
BoT-SORT (Simple Online and Realtime Tracking) [44] is an advanced multi-object tracking 
algorithm that integrates object detection, association, and re-identification techniques. This state-
of-the-art algorithm has demonstrated exceptional accuracy across various datasets. 

The functioning of BoT-SORT begins with the detection of objects within each frame of a video 
using a pre-trained object detector, such as YOLOv7 [43]. Subsequently, the detected objects are 
associated with one another across frames utilizing a Bayesian approach. This approach takes into 
consideration the appearance, motion, and social relationships of the objects. 
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To perform object detection in each frame of the VDOT dataset, we employed the YOLOv7 pre-
trained model. This model is highly effective in accurately detecting small objects even in lower 
resolution. The detected objects are then linked across frames using the BoT-SORT algorithm, 
which is widely regarded as the most efficient and accurate tracking method available.  

 

Figure 13. Video image. Sample result on a VDOT video demonstrating object detection with YOLOv7 [54], 
followed by tracking using BoT-SORT [55]. 

OCI 
OCI proved instrumental in processing multiple videos by leveraging tracking algorithms, 
effectively reducing the computational load and minimizing the utilization of VTTI GPU servers. 
OCI stands as a robust cloud computing platform, offering an extensive range of global 
Infrastructure as a Service (IaaS) and Platform as a Service (PaaS) solutions. It boasts high 
reliability, security, and cost-effectiveness, empowering users to develop and operate various 
applications and services. OCI adopts a pay-as-you-go pricing model and provides support for 
diverse programming languages and frameworks. 

However, a few limitations were encountered while using OCI: 

• Limited availability of instances equipped with Nvidia-based GPU capabilities. 
• Instances with identical shapes are not permitted. 
• At times, resources may be allocated to other users, resulting in the inability to create an 

instance with the required image and shape. 
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Figure 14. Screenshot from the OCI webpage showcasing instance creation for computational purposes, along 
with convenient tracking of usage and expenses. 
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Appendix B: Drone-based Traffic Dataset 

Video Monitoring of Traffic Scenes 
Video data at a traffic scene captures the dynamics of the continuous traffic. Historically, video 
data at intersections has been captured in several ways. This includes roadside cameras, traffic 
surveillance cameras, dashboard cameras, and drone cameras. The data from different sources 
differs in many ways, including image resolution, frame rate, and field of view. Many states, 
including Virginia, have deployed several traffic cameras at intersections (Figure 5). These 
cameras are used for monitoring traffic, incident detection and monitoring, traffic enforcement, 
and law enforcement. These cameras generally have a fixed field of view but the capability to pan, 
tilt, and zoom. Recently, more advanced cameras have been deployed that can capture a 360-
degree view of the intersection. Modern cameras and commercial solutions provide high 
resolution, a wide field of view, and high-speed cameras. In more recent times, drone cameras are 
being widely used. These cameras can capture a bird’s-eye view of the full intersection. This helps 
to monitor the egress and ingress of traffic from all directions of the intersection (Figure 1).  

Drone-based intersection datasets play a crucial role in advancing the research and development 
of autonomous vehicles and intelligent transportation systems. These datasets provide valuable 
real-world scenarios that help train and evaluate algorithms for perception, prediction, and 
decision-making at intersections. These datasets are also commonly referred to as trajectory 
datasets due to their focus on providing information about the movement paths different traffic 
participants follow. The distinct advantage of these datasets lies in their innate ability to portray 
each traffic participant as a singular point defined by its GPS coordinates. This “bird’s-eye” 
perspective circumvents the potential errors introduced during the transformation from camera-
based to GPS-based coordinates. Consequently, the resulting network seamlessly translates into a 
graph representation, with participants forming nodes and relationships being depicted through 
edges. This elegant graph structure can be readily embraced by graph neural network (GNN) 
methodologies, which natively integrate with such data. The absence of transformation-induced 
errors confers a marked advantage to these datasets. This pristine foundation leads to a 
significantly enhanced graph-based output, thereby culminating in the formulation of more refined 
and accurate GNN models. 

inD [55] is a dataset of naturalistic vehicle trajectories recorded at intersections in Germany. The 
dataset includes data from four locations, and the positional error is typically less than 10 
centimeters. The dataset is applicable to many tasks such as road user prediction, driver modeling, 
scenario-based safety validation of automated driving systems, or data-driven development of 
highly automated driving system components. 
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Figure 15. Annotated photo. Exemplar scenario showcasing the trajectories of traffic participants in the inD 
dataset [46]. 

TAF-BW [56, 57] is a dataset of vehicle trajectories recorded at intersections in Baden-
Württemberg, Germany. The dataset includes data from 100 different intersections, and the 
positional error is typically less than 10 centimeters. The dataset is applicable to many tasks such 
as road user prediction, driver modeling, and traffic signal control. 

 

Figure 16. Annotated photo. Exemplar scenario showcasing the trajectories of traffic participants in the TAF-
BW dataset [47, 48]. 

INTERACTION [58] is a dataset of vehicle trajectories recorded at intersections in the United 
States, China, Germany, and Bulgaria. The dataset includes data from a variety of intersection 
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types, and the positional error is typically less than 10 centimeters. The dataset is applicable to 
many tasks such as road user prediction, driver modeling, and traffic signal control. 

 

Figure 17. Annotated photo. Exemplar scenario showcasing the trajectories of traffic participants in the 
INTERACTION dataset [49]. 

The SIND [59] dataset was collected at a signalized intersection located in Tianjin, China, offering 
a comprehensive and detailed perspective on traffic dynamics. Captured via high-quality drones, 
the dataset comprises 4,000-pixel resolution video footage, enabling the extraction of valuable 
information such as the trajectories of various traffic participants, the status of traffic lights, and 
high-definition maps of the area. 
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Appendix C: Virginia Intersection Data  

Selection of Intersections 
• For each of the 48,450 intersections in the database, the total number of police reports was 

calculated for crashes that occurred within a radius from the intersection. This calculation 
was based on a unique “node” variable. The resulting value, known as “total crashes,” 
indicated the overall number of crashes that took place at each intersection. This 
information was then utilized to rank the intersections based on their level of risk, ranging 
from the highest occurrence of crashes to the lowest, thus determining the safest 
intersections. 

• A second ranked list was generated by considering crashes that caused either at least one 
fatality (identified by the variable “K_PEOPLE”) or at least one severe injury (identified 
by the variable “A_PEOPLE”). This approach aimed to exclude minor crashes that only 
caused property damage or mild injuries. By focusing on more serious incidents, this 
ranking provided an independent estimate separate from fender benders and minor 
incidents. 

 

 

Figure 18. Photos. Satellite views of I1 (left) and I2 (right) obtained from Google Maps. 

General Trend 
• Higher frequency of severe crashes (56.4%) was observed between 12 and 7 p.m. across 

intersections (Figure 19). 
• Severe crashes occurred more frequently during May-October. 
• Fridays and Saturdays observed higher frequency of crashes during the week (Figure 20). 
• Pedestrians accounted for 15.1% of all traffic fatalities, 47.9% of which came from crashes 

at intersections.  
• Nighttime crashes (between dusk and dawn) were associated with a higher risk of 

pedestrian fatalities (73.7%), speeding-related crashes, and bicyclist fatalities.  
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• Pedestrian-related crashes were more often single-vehicle crashes, whereas non-
pedestrian-related crashes involved multiple vehicles.  

• Higher annual average daily traffic (AADT) was not found to be associated with a higher 
number of crashes. In fact, only 7 out of the top 20 riskiest intersections were ranked in the 
list of top 100 intersections based on AADT values. 

 

Figure 19. Graph. Crash distribution by time of day (x-axis denotes military time in hours). 

 

Figure 20. Graph. Crash distribution by day of the week. 
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Figure 21. Map. Locations of selected intersections (Blacksburg, Virginia Beach, Newport News, Hampton). 

 

Figure 22. Photos. Street views of I4 (top) and I5 (bottom) from Google Maps (Hampton and Newport News, 
VA). 
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Identification and Collection of Traffic Videos from VDOT Traffic 
Cameras 
In this work, we present our analysis of the VT-CAST (Traffic Cameras for Advanced Safety 
Technologies) 2020 dataset [34]. Traffic cameras spread throughout Virginia stream the live video 
feeds on the VDOT server. These streams are recorded in segments of 1-hour videos to form the 
dataset. The cameras are strategically placed at intersections, highways, and other roadways at 
several locations in Virginia. These cameras are positioned to capture a wide field of view and 
offer an oblique perspective that allows visibility of the surrounding road area. While the cameras 
do not provide a top-down view, they ensure comprehensive monitoring of traffic conditions. The 
cameras solely offer raw video feeds and do not provide specific information regarding the 
kinematics or movement patterns of the traffic participants in the observed scenario. 

 

Figure 23. Video image. Sample frames from the VT-CAST 2020 dataset to demonstrate view range and 
video quality. 

• A spreadsheet containing detailed information about VDOT traffic cameras was created. 
The spreadsheet includes the GPS coordinates and basic details of all 1,263 functional 
cameras. 

• Annotations were employed to identify and eliminate cameras exhibiting inadequate data 
quality, including low resolution, rotating mechanisms, irrelevant field of view (e.g., 
parking lots), signal loss, or accidental changes in orientation caused by wind or other 
factors. As a result, a subset of 500 cameras with functional and pertinent data was 
obtained. 

• Using GPS coordinates, the Euclidean distance was calculated for each possible pair of 
cameras and intersections. This resulted in a 500 x 48,450 matrix representing the distances 
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between cameras and intersections. From this matrix, the cameras that were closest to each 
of the 20 intersections of interest were determined. 

• The traffic footage from each camera was carefully examined to verify data integrity and 
usability. This involved checking whether the camera captured a sufficient portion of the 
intersection’s traffic flow. Cameras that exhibited intermittent rotation or poor video 
quality were excluded from the analysis process. 

Roughly 30 to 60 hours of video were recorded for each intersection based on recording 
availability and viable streaming quality. 

Discussion 
The five identified intersections (Dam Neck Rd - Virginia Beach, US-60 - Virginia Beach, 
Lynnhaven Pkwy - Virginia Beach, Independence Blvd - Virginia Beach, US-58 - Virginia Beach) 
rank among the worst crash locations in Virginia every year, as verified by multiple state, county, 
and independent reports. General trends found in crash distributions (e.g., days of week, pedestrian 
involvement) are further confirmed by statistics generated by VDOT, the Fatality Analysis 
Reporting System, and independent county departments of motor vehicles. Additionally, the 
presented analysis highlights subtle relationships that go beyond the state-generated reports. For 
example, roughly 53% of all crashes were found to have occurred during daylight hours. While it 
may imply that fewer crashes occur during the night, it should be noted that the average traffic 
volume flow during the night is significantly lower than that during the day—therefore, a lot more 
crashes occur during nighttime per unit flow of traffic, or per number of cars driven through an 
intersection. Furthermore, nighttime crashes result in a significantly higher percentages of fatalities 
compared to the former.  
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Appendix D: Technical Background 

Pixel-to-GPS Transformation 
Pixel-to-GPS conversion involves transforming an image captured by a camera into geographic 
coordinates using GPS data. This technique is widely used in the field of remote sensing and allows 
researchers to obtain precise geolocation information from satellite or aerial imagery. 

In this work, we used the video feed from cameras situated at various intersections throughout 
Virginia by VDOT. We chose several intersections where there have been a high number of crashes 
according to statistics. We chose a frame with as few vehicles as possible so that the road structure 
and markings were clearly visible. Because we knew where these cameras are located, we also 
obtained the Google Earth (nadir) view of that location. Based on these two views (camera and 
Google Earth), the projection of pixel-to-GPS was achieved. 

To accurately represent the intersectional areas, a rectangular Cartesian coordinate plane was 
generated by assuming parallel latitudes and longitudes within each 1,500-ft direction. The 
following approximations were derived: 

1. A 1-degree change in latitude corresponds to approximately 69 miles. 
2. For a 1-meter distance, the latitude experiences a change of approximately 0.0000089-

degrees. A 1-degree change in longitude corresponds to around 55 miles. 
3. In GPS coordinates, the fifth decimal place represents a distance of 1 meter or 

approximately 3.3 ft. 

 

Figure 24. Diagrams. Parallel of latitude and meridians of longitude. Images credit: 
https://www.britannica.com/science/meridian-geography, https://docs.unrealengine.com/5.0/en-

US/georeferencing-a-level-in-unreal-engine/  

https://www.britannica.com/science/meridian-geography
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The process of pixel-to-GPS transformation involves annotating the image captured by the camera 
with key points that can be identified distinctively in the Google Earth view. Around 20-30 points 
are chosen that are spread around the entire image so that the projection is not biased towards a 
particular region of the image. Based on the pixel coordinates from the camera view and the GPS 
coordinates from the Google Earth view of these key points, a homography matrix is obtained. 
This homography matrix can now project any point visible in the camera to the corresponding GPS 
coordinate. One additional requirement is that the chosen point should be as close to the ground 
surface as possible. This is required since the projection matrix does not take height into account. 

The accuracy of the transformation depends on several factors, including the quality of the GPS 
data, the stability of the camera’s orientation, and the quality of the data captured by the camera. 
However, when these factors are carefully controlled, pixel-to-GPS perspective projection can 
produce highly accurate geolocation information, making it an essential tool for many applications 
in remote sensing, including mapping, monitoring, and land-use analysis. 

To compute the homography matrix, we utilized the Random Sample Consensus (RANSAC) 
algorithm. This algorithm is widely used in computer vision and image processing for estimating 
a transformation matrix between sets of corresponding points in different images. It is particularly 
effective when dealing with data that contains outliers or errors. 

 

Figure 25. Video images. Matching points from Google Maps top-down view (left) and camera view (right) 
for homography computation. 

The RANSAC algorithm works iteratively by randomly selecting subsets of the matching points 
and estimating a homography matrix based on those subsets. The obtained matrix is then used to 
evaluate the number of inliers, which are the points that align well with the estimated 
transformation. This iterative process helps filter out outliers and provides a robust estimation of 
the homography matrix. 
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Due to the lower quality of videos, the bounding box surrounding each participant tends to vary 
and exhibit jitter. This also affects the trajectory of the tracked point post transformation. To further 
enhance the smoothness of the participant’s trajectory, we applied a Savitzky–Golay filter [60] on 
the tracked GPS point for each participant. This filtering technique helps reduce noise and 
irregularities in the participant’s movement pattern, resulting in a more refined and consistent 
trajectory. 

The GPS reference point is used to convert the GPS coordinates of all the participants in terms of 
relative distance (in meters) along the x-axis and y-axis directions. These axes are taken to be 
parallel to the image width and length. 

Projection to Frenet Space 
Now that we established the road layout, our next step was to represent the participants on the 
road. As shown in Figure 26, we additionally labeled the vehicles (alphabetically) to identify them 
in the creation of an SSG. In Frenet space, the centerline of each road segment corresponds to one 
of the axes. By transforming the variables (x, y) from Cartesian coordinates to (s, d) in Frenet 
space, we can accurately describe the position of a vehicle on the road. 

 

Figure 26. Diagrams. Transformation from Cartesian to Frenet coordinates. The figure on the bottom left 
shows an example vehicle with the origin of Cartesian coordinate frames aligned to it. The figure on the 

bottom right shows the same vehicle in Frenet space with the centerline of the road as the s-axis. The figure 
on top shows the transformation from Cartesian to Frenet space. Images credit: [33, 61]. 
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In Frenet coordinates, s represents the distance along the road, also known as longitudinal 
displacement; d represents the side-to-side position on the road relative to the reference path, also 
known as lateral displacement. 

To determine the Frenet coordinates for a given point in the vehicle frame, we need to find the 
closest point on the reference path. The run length from the reference path points provides us with 
the s coordinate of the transformed point. If the reference path is sufficiently smooth, meaning it 
is continuously differentiable, the vector at that point will be orthogonal to the reference path. The 
signed length of the perpendicular vector from the reference path determines the d coordinate. 

Graph Neural Network 
The graph neural network is specifically designed to capture relational information in a graph. This 
kind of neural network is different from traditional neural networks in multiple aspects:  

1. Unlike images, graph data cannot be resized, reshaped, or padded to fit a predetermined 
input size. Consequently, conventional neural networks, which typically expect fixed-size 
inputs, face difficulties when handling graph data. 

2. Isomorphism: Graphs that may appear dissimilar can actually possess identical structural 
properties. Consequently, algorithms designed to process graph data must exhibit 
invariance to permutations, enabling them to handle graphs that have different node 
ordering but equivalent structures. 

3. Graphs exhibit a non-Euclidean structure, which contrasts with the grid-like structure of 
images or regular grid data. Consequently, machine learning techniques applied to graph 
data are often referred to as geometric deep learning, acknowledging the geometric nature 
of the data and the need for specialized approaches. 

TransformerConv 
TransformerConv is a novel attention-based model that was proposed in Shi et al. [49]. It is 
designed to be more efficient and effective than traditional attention mechanisms for graph-
structured data. The graph transformer operator works by first computing a local attention score 
for each pair of nodes in the graph. This score is based on the features of the two nodes and the 
edges between them. The local attention scores are then used to compute a global attention score 
for each node. This score is used to weight the features of the neighboring nodes when updating 
the features of the current node. The graph transformer operator has several advantages over 
traditional attention mechanisms. First, it is more efficient because it only computes local attention 
scores, rather than global attention scores. Second, it is more effective because it can capture long-
range dependencies between nodes in the graph. Here is a more detailed explanation of the graph 
transformer operator: The process begins with the computation of local attention scores. Each node 
in the graph is assigned a score based on its own features and those of its neighboring nodes. These 
scores are subsequently normalized, and the attention score for each node pair is obtained by 
multiplying the scores of the two involved nodes. Next, the global attention score is calculated for 
each node by summing up the weighted local attention scores of its neighbors. The weights are 
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determined using a softmax function to ensure their sum is equal to 1. Finally, the features of a 
node are updated using the global attention score. This entails computing a weighted sum of the 
features of the node’s neighbors, where the weights correspond to the global attention scores. 

GINEConv 
GINEConv (Graph Isomorphism Network with Edges) [50] is a graph convolutional neural 
network (GCNN) that uses a novel message passing mechanism to aggregate node features. The 
message passing mechanism is based on the Graph Isomorphism Network (GIN) [51], but it also 
incorporates edge features. This allows GINEConv to learn more complex representations of 
graphs than GNNs that do not use edge features.  

The GINEConv architecture consists of several key components. First, the layer begins by 
computing a per-edge representation, which is derived from both the node features and the edge 
features. This process enables the layer to capture the intricate relationships between nodes and 
edges in the graph. Subsequently, the layer aggregates these per-edge representations, combining 
them into a comprehensive per-node representation. By doing so, the layer effectively summarizes 
the information obtained from neighboring edges and nodes for each specific node. Finally, to 
generate the desired output node features, the layer applies a neural network to the per-node 
representation, leveraging its ability to learn complex patterns and relationships within the data. 
Overall, the GINEConv architecture adeptly transforms the initial input features into refined and 
informative node representations. 

Traffic Safety Metrics 
Accelerating or Decelerating Rapidly  
Rapid acceleration presents a multitude of risks and hazards that demand recognition and 
mitigation [36]. These hazards encompass the potential loss of control, reduced traction, and an 
extended stopping distance. Similarly, rapid deceleration, commonly known as sudden braking, 
entails its own set of dangers, such as whiplash injuries, compromised balance, and an increased 
likelihood of rear-end collisions. Safeguarding individuals necessitates a meticulous assessment 
of acceleration or deceleration, treating it as the rate of speed change. Consequently, this parameter 
can be expressed in terms of the g-force experienced by each participant, ensuring a comprehensive 
evaluation of safety measures. 

We have established specific thresholds for acceleration and deceleration based on the generally 
accepted safe limits observed in most vehicles [11,12,16, 19, 62]. For acceleration, we have set 
the threshold at 0.6 g, indicating the capability to reach a speed of 60 mph from a standstill in less 
than 5 seconds. This ensures quick and efficient acceleration without compromising safety. 

Similarly, for deceleration, we have set a threshold of 0.5 g, which corresponds to the maximum 
force experienced during safe braking. This allows for effective and controlled deceleration, 
ensuring the vehicle can come to a stop swiftly while maintaining safety standards. 
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Time to Collision 
The time to collision (TTC) is a critical measurement used to assess the probability of a collision 
between two traffic participants. It provides a quantitative indication of the time required for two 
participants to collide if their current trajectories remain unchanged. The TTC metric plays a vital 
role in predicting and preventing crashes by enhancing the effectiveness of collision avoidance 
systems. Typically, TTC is computed based on the relative distance and velocities of the two 
participants. By estimating these parameters, it becomes possible to determine the time remaining 
until the participants reach critical proximity that could result in a collision. 

The calculation of the TTC parameter is applicable when two participants are moving 
longitudinally, either in the same direction or opposite directions. The information about the 
longitudinal relationship between a pair of participants is obtained from the SSG. The TTC value 
is usually compared to a predefined safe threshold. If the calculated TTC falls below this threshold, 
it is considered dangerous, indicating an increased likelihood of a crash. 

The purpose of establishing a safe threshold for TTC is to define a clear criterion that helps identify 
critical situations where there is insufficient time remaining to take appropriate actions before a 
potential collision. By defining this threshold, it becomes possible to prompt timely responses and 
implement necessary measures to avoid crashes. 

One limitation of TTC as a safety measure in intersection scenarios is its tendency to generate a 
significant number of false violations, which may not necessarily indicate unsafe driving behavior. 
This issue arises because vehicles often decelerate when approaching a stop signal, which can 
mistakenly trigger TTC calculations suggesting a potential collision with the vehicle ahead. The 
fundamental assumption underlying TTC is that vehicles maintain their velocities, which does not 
hold true in situations where vehicles slow down to stop or accelerate to cross intersections, such 
as when encountering traffic signals. 

In this study, we selected a threshold value of 2 seconds for TTC based on research on safe 
following distances and speed [11, 19]. While TTC is an important safety metric, it alone cannot 
provide accurate analysis, particularly in the case of intersections. Hence, we adopted an approach 
by incorporating factors such as vehicle speed, braking, and TTC to identify collision-prone 
situations more effectively. 

Post-encroachment Time  
Post-encroachment time (PET) is a crucial metric used to assess the risk of collisions in traffic 
scenarios. It represents the time interval between one traffic participant leaving an encroached 
region and another participant entering the same space thereafter. PET directly measures the 
amount of time available for road users to react to potential hazards, making it a valuable indicator 
of collision probability. 

To evaluate PET values, this study focused on pairs of participants that exhibit either a lateral or 
intersecting relationship, as determined by the SSG. Intersecting relationships commonly occur at 
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traffic intersections or when one road merges into another. Lateral relationships, on the other hand, 
arise when two participants occupy adjacent lanes and may potentially cross paths if one or both 
participants decide to change lanes. 

Unlike previous metrics, the calculation of PET cannot be obtained through a straightforward 
formula. It necessitates the identification of instances where a current participant intersects with a 
point previously traversed by another participant. Crucially, this calculation considers the 
requirement that the two participants share a lateral or intersecting relationship. By accounting for 
these factors, PET provides a comprehensive assessment of collision risk in traffic scenarios. 

A threshold of 1.5 seconds has been established for the PET metric, taking into account previous 
research on PET values for medium and high-risk scenarios [63]. If the estimated PET value of 
two vehicles involved in a situation is less than or equal to 1.5 seconds, it is considered unsafe. 
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Appendix E: Network Theory 
Network theory is a field of study that focuses on analyzing and understanding complex systems 
composed of interconnected elements. It has found numerous applications in various domains, 
including transportation and traffic analysis. The structure of these networks, referred to as 
topology, holds important information and can be useful in uncovering insights about traffic 
patterns and flow. The goal of network analysis is to effectively manage the complexity of the 
network and extract meaningful information about traffic behavior and performance. 

Networks can be used to depict various types of data. The nodes in these networks can symbolize 
different components such as vehicles or pedestrians, and the edges between them represent the 
connections or relationships between them. 

The topological properties of these networks, including the arrangement of nodes and edges, play 
a crucial role in identifying key structures and relationships within the  network. These properties 
can be applied to the entire network or specific nodes and edges to better understand the traffic 
flow and optimize transportation systems. 

Node-level Features 
Node features provide information regarding the structure and position of nodes in the network. 
By analyzing these node-level features, we can gain insights into the role and importance of 
individual nodes in the network, as well as identify patterns and trends in the network’s overall 
structure and behavior. 

Node Degree 
Node degree refers to the number of edges connected to the node. This parameter is a critical factor 
that impacts various aspects of network analysis, including the centrality of a node. In directed 
networks, nodes have two different degrees: out-degree and in-degree. Out-degree represents the 
number of edges originating from a node, while in-degree refers to the number of edges ending at 
a node. Nodes with high degrees are more connected to other nodes and can have a greater 
influence on the network as a whole. On the other hand, nodes with low degrees are less connected 
to other nodes and may have a smaller impact on the network as a whole. 

Centrality  
There are various forms of centrality, each capturing a unique concept. Centrality can be computed 
for nodes and edges and provides a measure of their importance in terms of connectivity or 
information flow within the network. The degree of a node significantly impacts many centrality 
measures, such as degree centrality. However, more advanced forms of centrality, such as 
betweenness centrality, consider a wider range of factors and therefore result in a reduced influence 
of node degree. 
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Eigenvector centrality, also known as eigencentrality or prestige score, is a measure of the 
influence of a node in a network. High-scoring nodes contribute more to the score of a node in 
consideration. This is a recursive formulation, as the score of a node is dependent on the scores of 
its neighboring nodes, and so on. Rewriting this in a matrix form and finding the eigenvector 
corresponding to the largest eigenvalue gives the centrality. The following equation shows the 
formulation and the matrix representation: 

cv  =  
1
𝜆𝜆

� 𝑐𝑐𝑢𝑢
𝑢𝑢∈𝑁𝑁(𝑣𝑣)

⇔   λ c =  Ac 

Here, 𝐴𝐴 is the adjacency matrix such that 𝐴𝐴𝑢𝑢𝑢𝑢 = 1 if u is a neighbor of v; λ is the normalization 
constant, and the eigenvector 𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚 corresponding to the largest eigenvalue 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚  is used for 
centrality. 

A node with high eigenvector centrality is connected to other nodes that are also highly connected 
and important in the network. This means that the node has a high influence in the network and 
can spread information or influence throughout the network more effectively. Conversely, a node 
with low eigenvector centrality is connected to nodes that are less important in the network and 
therefore has less influence on the network as a whole. 

Betweenness centrality is used to determine the importance of a node within a network based on 
its ability to connect other nodes. Specifically, it is calculated as the number of shortest paths that 
pass through a node divided by the total number of shortest paths in the network. This results in a 
score between 0 and 1. Nodes with high betweenness centrality (close to 1) are considered to be 
critical in maintaining the flow of information or resources throughout the network because they 
act as mediators or connectors. Nodes with low betweenness centrality (close to 0) lie on fewer of 
the shortest paths between pairs of nodes in the network and therefore are considered to have less 
control over the flow of information or resources. 

Closeness centrality is used to determine the importance of a node within a network based on its 
ability to reach other nodes in the network. Specifically, it calculates the reciprocal of the sum of 
the shortest distances between a node and all other nodes in the network. Nodes with high closeness 
centrality are considered to be important because they have a higher ability to receive and 
disseminate information or resources within the network. Conversely, nodes with low closeness 
centrality have a longer path to reach other nodes in the network and therefore have a lower ability 
to receive and disseminate information or resources. 

Clustering Coefficient 
The clustering coefficient is a measure used to determine the degree to which nodes in a network 
are connected to each other. Specifically, it quantifies the extent to which a node’s neighbors are 
themselves connected to each other. Nodes with high clustering coefficients are said to form 
clusters or cliques, where each node is connected to multiple other nodes in the cluster. The 
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calculation of clustering coefficient involves determining the fraction of a node’s neighbors that 
are also neighbors of each other. This value is then averaged over all nodes in the network to give 
a score between 0 and 1, with higher scores indicating that the node is part of a tightly knit group 
or cluster within the network, where there are many connections between nodes. A low score 
indicates that the node may not be part of a tightly knit group or cluster within the network and 
there are fewer connections between nodes. 

Link/edge-level Features 
Link-level features provide information about individual edges or links in a graph and can be used 
to understand the relationships between nodes in the network. By analyzing these link-level 
features, we can gain insights into the patterns and trends of relationships between nodes in the 
network and also identify influential edges and understand their role in the network’s overall 
behavior. 

Local Neighborhood Overlap 
Local neighborhood overlap measures the similarity between the sets of neighbors of two nodes 
in a network. If two nodes in a graph have many neighbors in common, then they are likely to have 
a stronger relationship or influence on each other.  

Jaccard’s coefficient measures the similarity between two sets of data. It is defined as the ratio of 
the number of common neighbors of two nodes to the total number of neighbors of the two nodes 
combined. A high Jaccard’s coefficient between two nodes signifies that they have a significant 
number of common neighbors, indicating that they are likely to have a stronger relationship or 
influence on each other. Conversely, a low Jaccard’s coefficient between two nodes signifies that 
they have few common neighbors, indicating that they may have a weaker relationship or influence 
on each other. 

Adamic-Adar index is based on the idea that the importance of a shared neighbor between two 
nodes is inversely proportional to the number of neighbors that the shared neighbor has in the 
network. The Adamic-Adar index between two nodes is calculated by summing the inverse 
logarithm of the degrees of all the shared neighbors of the two nodes. The degree of a node is the 
number of edges that it has in the network. The formula for calculating the Adamic-Adar index is 
shown below: 

�
1

log (deg(𝑢𝑢))
𝑢𝑢∈𝑁𝑁(𝑣𝑣1)∩𝑁𝑁(𝑣𝑣2)

 

Here, deg(u) refers to the degree of node u that is a common neighbor of nodes 𝑣𝑣1 and 𝑣𝑣2. 

A high Adamic-Adar index between two nodes indicates that they have many common neighbors 
with low degree, which implies that their similarity is based on connections to less important nodes 
in the network. In contrast, a low Adamic-Adar index between two nodes indicates that they have 
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few common neighbors with low degree, which implies that their similarity is based on 
connections to more important nodes in the network. 

Global Neighborhood Overlap 
Global neighborhood overlap measures the similarity between the sets of neighbors of all pairs of 
nodes in a network. It quantifies the extent to which nodes in the network have similar sets of 
neighbors and therefore reflects the overall structure and connectivity of the network. 

Katz index evaluates the relative importance of each node based on its direct and indirect 
connections to other nodes. It counts the number of walks of all lengths between a pair of nodes 
and can be formulated as follows: 

𝑆𝑆 =  (𝐼𝐼 − 𝛽𝛽 𝐴𝐴)−1  −  𝐼𝐼 

Here, S is the Katz index matrix, 𝛽𝛽 is the discount factor, I is an identity matrix, and A is the 
adjacency matrix. 

Safety Features from Graph 
Table 6 and Table 7 present the node and link features, respectively, for one of the intersections in 
Virginia. This particular intersection has a documented history of a high frequency of crashes. The 
node and edge features provided in the tables were obtained from a 50-minute video feed captured 
during the afternoon. The distance margin for creating the graph was chosen as 10 meters. Based 
on the obtained graph, these features were calculated. The details of all measures in the tables can 
be found in Appendix D: Technical Background.  

Table 6. Average Values for Various Node-level Features such as Degree, Centrality, and Clustering 
Coefficient Computed for One of the Videos from the VDOT Database 

Node Count Degree Centrality Clustering 
coefficient 

Eigenvector Betweenness Closeness 
Car 8177 2.48659 0.18796 0.03496 0.24433 0.32658 

Truck/Bus 3110 2.57098 0.21295 0.02449 0.25161 0.3795 
Pedestrian 120 1.46054 0.10737 0.016178 0.18812 0.25529 

Bicycle 23 4.81395 0.19966 0.05233 0.41798 0.42497 
Motorcycle 23 2.6279 0.24813 0.05588 0.3292 0.40337 

Table 6 presents some interesting characteristics about the traffic scene; it is evident that cars, 
trucks, and motorcyclists typically have an average degree of approximately 2.5. This suggests 
that, on average, they are surrounded by two to three other vehicles or traffic participants. On the 
other hand, bicyclists have a higher degree because they share edges with both pedestrians and 
vehicles. However, due to the narrower cycling lanes, there tend to be more traffic participants 
within a 10-meter proximity to cyclists. Consequently, cyclists are generally at a higher risk, as 
they have a greater number of traffic participants in proximity. 
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Moreover, among all the road users, bicyclists experience the least amount of safety. This is 
primarily due to their higher exposure to nearby traffic participants and the inherent risks 
associated with sharing the road with vehicles. In contrast, pedestrians typically walk on sidewalks 
and thus have the fewest number of connections or edges with other participants. Additionally, it 
appears that there are only a limited number of pedestrians captured in the video data. 

Eigenvector centrality measures a traffic participant’s significance within a network. In Table 6, it 
is evident that pedestrians hold the lowest influence on the network, while other participants 
exhibit relatively comparable levels of influence. Notably, motorcyclists emerge as the group with 
the most substantial impact. 

Closeness centrality is a measure that quantifies how close a traffic participant is to other 
participants within a network. It is calculated based on the distances between the participant and 
all other participants. The values of closeness centrality follow a similar trend as the average degree 
for different traffic participants in the network. 

The clustering coefficient is a measure that indicates the tendency of nodes in a network to form 
clusters or groups. It is observed that bicycles exhibit the highest tendency to form clusters, 
followed by motorcycles. In contrast, pedestrians have the least inclination to form such clusters. 

Table 7. Average Values for Various Link-level Features such as Jaccard’s Coefficient, Adamic-Adar Index, 
and Katz Index Computed for One of the Videos from the VDOT Database 

Node 1 Node 2 Average 

Jaccard Adamic-Adar 
Bicycle Car 0.20755 0.85407 
Bicycle Pedestrian 0.05555 0.2103 
Bicycle Truck/Bus 0.19010 0.89363 

Car Car 0.2341 0.82552 
Car Motorcycle 0.21041 0.72338 
Car Pedestrian 0.191915 0.5831 
Car Truck/Bus 0.25405 0.89782 

Motorcycle Pedestrian 0.03809 0.16156 
Motorcycle Truck/Bus 0.2 0.63092 
Pedestrian Truck/Bus 0.12771 0.43341 
Truck/Bus Truck/Bus 0.29414 0.99186 

Based on the local-overlap data (Jaccard’s coefficient and Adamic-Adar index) presented in Table 
7, motorcycles and pedestrians, and bicycles and pedestrians have the least number of edges with 
common traffic participants. This could be because most of the edges of traffic participants are 
with cars given the high number of cars in the video. The values for the various other node types 
are very similar. It is additionally observed that, in the case when two trucks/buses are present in 
the frame, there are more common traffic participants than usual.  
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The Katz index is typically used in network analysis to measure similarity or overlap between 
nodes based on their connectivity patterns within a network. It is commonly applied to social 
networks, where nodes represent individuals and edges represent relationships between them. In 
such networks, the Katz index can capture the degree of similarity or overlap in terms of shared 
connections. 

However, in a traffic network where nodes represent traffic participants and edges represent 
proximity, the concept of similarity or overlap between nodes may not be meaningful in the same 
way. In this context, the focus is on proximity and interaction between participants rather than 
shared connections. 

In traffic networks, other measures such as traffic flow, congestion, shortest paths, or centrality 
measures like betweenness centrality or closeness centrality may be more relevant for 
understanding the dynamics and efficiency of the network. 
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Appendix F: New Drone Data from Virginia 

Traffic Datasets 
Datasets play a major role in any research. Traffic-related research has been historically carried 
out by using crash reports and statistics. In recent years, we have seen more emergence of advanced 
sensor-based datasets. These datasets are primarily camera data with traffic videos. The videos are 
generally collected in two ways: using infrastructure cameras and using drones. In an ideal 
situation, we should receive traffic information from all directions of traffic, including entry and 
egress. Also, we should collect data from diverse intersections to cover the large spectrum of 
behaviors in intersections. Most of the infrastructure camera-based studies to date were very small 
scale and targeted one to six intersections [64]. Traffic cameras from departments of transportation 
are often a good source of information with wide geographical coverage. In this project, our 
primary target was traffic camera data. Alternatively, drone-based videos can capture a wide area 
around the intersection, depicting a much better understanding of the interplay of traffic from 
multiple directions. Along with the trajectory data, these datasets typically include GPS 
coordinates of the intersection location and, in some cases, the road layout based on the 
OpenStreetMap format. Additionally, certain trajectory datasets may also include traffic signal 
information, further enhancing their usefulness for analyzing traffic scenarios. Some of the most 
popular intersection datasets are inD [55], TAF-BW [56, 57], INTERACTION [58], and SIND 
[59]. In this project, we specifically explored traffic camera data from Virginia.  

New Drone-based Traffic Dataset 
The intersection datasets we discussed primarily focus on Europe and China, while only 
considering very few scenarios from the United States. However, it is crucial to note that the U.S.-
based datasets we examined do not include traffic signal information. This omission is significant 
because various states, as well as certain cities, have varying regulations regarding the 
permissibility of making a right turn on a red signal. Furthermore, driving styles exhibit significant 
disparities across states, cities, and even college towns. To address these limitations and the 
inadequate quality of the VDOT videos, we put forth the proposition of creating a new dataset. 

We began with various intersections in Blacksburg, VA, where a 4,000-pixel resolution DJI drone 
was flown above the intersection at an altitude of 100-120 m. Two phone cameras were used at 
diagonally opposite sides of the intersection to capture the traffic signal information for two sides 
from each camera. We also used a light flash visible in all three cameras to synchronize all three 
videos. Our dataset collection strategy thus also provides us with the traffic signal information that 
not many public datasets provide. Finally, these videos have been provided to Tsinghua University, 
who provided the annotations in the form of a lanelet2 map (OpenStreetMap format) and the 
position and kinematic information of various traffic scenario participants. 
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Figure 27. Photos. Two mobile phones placed on diagonally opposite corners of the street such that they 
capture data from two of the traffic signals. 

  

Figure 28. Photo. A frame from the drone view annotated with the mobile phone camera location. 
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